Active contraction of microtubule networks

نویسندگان

  • Peter J Foster
  • Sebastian Fürthauer
  • Michael J Shelley
  • Daniel J Needleman
چکیده

Many cellular processes are driven by cytoskeletal assemblies. It remains unclear how cytoskeletal filaments and motor proteins organize into cellular scale structures and how molecular properties of cytoskeletal components affect the large-scale behaviors of these systems. Here, we investigate the self-organization of stabilized microtubules in Xenopus oocyte extracts and find that they can form macroscopic networks that spontaneously contract. We propose that these contractions are driven by the clustering of microtubule minus ends by dynein. Based on this idea, we construct an active fluid theory of network contractions, which predicts a dependence of the timescale of contraction on initial network geometry, a development of density inhomogeneities during contraction, a constant final network density, and a strong influence of dynein inhibition on the rate of contraction, all in quantitative agreement with experiments. These results demonstrate that the motor-driven clustering of filament ends is a generic mechanism leading to contraction.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Connecting macroscopic dynamics with microscopic properties in active microtubule network contraction

The cellular cytoskeleton is an active material, driven out of equilibrium by molecular motor proteins. It is not understood how the collective behaviors of cytoskeletal networks emerge from the properties of the network’s constituent motor proteins and filaments. Here we present experimental results on networks of stabilized microtubules in Xenopus oocyte extracts, which undergo spontaneous bu...

متن کامل

ACCEPTED MANUSCRIPT Active contraction of microtubule networks

Many cellular processes are driven by cytoskeletal assemblies. It remains unclear how cytoskeletal filaments and motor proteins organize into cellular scale structures and how molecular properties of cytoskeletal components affect the large scale behaviors of these systems. Here we inves5 tigate the self-organization of stabilized microtubules in Xenopus oocyte extracts and find that they can f...

متن کامل

Nanobiomechanical Properties of Microtubules

Microtubules, the active filaments with tubular shapes, play important roles in a wide range of cellular functions, including structural supports, mitosis, cytokinesis, and vesicular transport, which are essential for the growth and division of eukaryotic cells. Finding properties of microtubules is one of the main concerns of scientists. This work helps to obtain mechanical properties of m...

متن کامل

Microtubule dynamics regulation contributes to endothelial morphogenesis

Because little is known how microtubules contribute to cell migration in a physiological three-dimensional environment, we analyzed microtubule function and dynamics during in vitro angiogenesis in which endothelial cells form networks on a reconstituted basement membrane. Endothelial network formation resulted from distinct cell behaviors: matrix reorganization by myosin-mediated contractile f...

متن کامل

Changes in Quadriceps and Hamstring Co-Contraction Following Landing in Microgravity Condition: Comparing Females with Different Activity Levels

Purpose: This study aimed to examine the differences in the co-activation of the rectus femoris (RF) and biceps femoris (BF) using the co-contraction index (CI) in aquatic and land environments during a drop-landing task in active and non-active females. Methods: In this casual-comparison study, 10 active and 10 non-active females volunteered to participate. The CI was calculated from record...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2015